
Learning Solutions to Partial Differential Equations

Arasu Arun (aa7977), Nitin Shyamkumar (nhs9171), Chia-Hao (Leo) Wu (chw398)

December 15, 2020

Abstract

Physics informed machine learning consists of various machine learning methods for learning partial
differential equation (PDE) models and solutions. We empirically study three methods from this field
for learning solutions to a PDE model, focusing on the Hamilton Jacobi Bellman PDE for continuous
time control. We find that the methods learn accurate solutions for high dimensional linear systems.
Although the methods have some shortcomings, they achieve promsing results on the Cartpole task from
nonlinear control.

1 Introduction

Deep learning combined with recent surges in compute power have led to transformative discoveries in a wide
range of disciplines. Advancements in computer vision [1, 2], reinforcement learning methods for playing
complex games [3], and most recently problems in structural biology [4] encouraged applied mathematicians
and physicists to use machine learning (ML) methods and define a new area of physics informed machine
learning. These approaches propose deep networks, among other ML methods, to solve challenging nonlinear
problems in the physical sciences [5] focusing on both solving Partial Differential Equations (PDEs) [6] as
well as systems identification (learning parameters of a model) [7]. In these approaches, domain experts
can structure the machine learning approach to include well established physical invariants. The approach
has a few benefits. Firstly, a physical system can be highly nonlinear and unconstrained optimization may
be difficult, so establishing physical constraints can reduce the search space of ML methods. Secondly,
physical constraints increase trust in the model by ensuring that the learned model respects well established
theoretical or empirical laws of nature.

Separately, computer science researchers in reinforcement learning (RL) have continued researching plan-
ning algorithms for Markov Decision Processes. In this framework, the challenge is to plan an optimal policy
in known environment with established dynamics. While this problem has received substantial attention
from the RL community, comparatively less attention has been directed at combining traditional control
theoretic frameworks with advancements in deep learning. Many recent methods, such as the Deep Q Net-
work, have moved in entirely the other direction, abstracting the physical system away entirely from the
learning problem. Nonetheless, researchers in the machine learning community have continued to explore the
intersection of traditional mathematical control theory and reinforcement learning. [8] proposes a method
to identify (learn, in ML parlance) a nonlinear system under the broad assumption that the function f
describing system dynamics lies in the Reproducing Kernel Hilbert Space (RKHS) of a known kernel. A
similar approach is taken by [9].

In our work, we examine the effectiveness of physics informed machine learning methods for the planning
task in reinforcement learning (RL). We propose making stronger assumptions than [8], assumptions that are
perhaps stronger than typical in computer science RL literature. As [9] observes, such an assumption is not
necessarily unreasonable. In applications such as robotics, we may have accurate estimates of internal system
components including mass and dimensions. We study this approach in detail, comparing two different
physics informed neural network methods with a Deep Q Network baseline and discuss a few theoretical
aspects. We finally study the methods on a simple Linear Quadratic Gaussian problem to establish a base
competency, as well as the canonical challenging and highly nonlinear cart pole system.

1

2 Hamilton Jacobi Bellman Partial Differential Equations

2.1 Stochastic Optimal Control

We present the technical formulation of the stochastic optimal control problem, discussing only relevant
highlights. For additional details, see the appendix. As discussed in class, the discrete time, finite horizon
planning problem for a Markov Decision Problem with known system dynamics is the problem of finding the
optimal policy π∗ and corresponding value function for each state given by

st = δ(st−1, π
∗(st−1))

Vπ∗(s) = max
π

E

[
T−1∑
t=0

r(st, π
∗(st))

∣∣∣∣∣s0 = s

]

In this problem, s ∈ S is a state in the system, (st) is the state sequence, δ is the transition function, which
may be probabilistic in nature, r(s, a) is the reward function for a state-action pair, T is the horizon, π is
the policy, and V is the value function [10]. The continuous time formulation bears a strong resemblance to
the problem above.

The standard stochastic continuous time control problem is described as follows. A full explanation is
outside the scope of this report, we direct the reader to [11] and [12]. Here, we have a state trajectory
x(t) ∈ X ⊆ Rn, a control trajectory u(t) ∈ U ⊂ Rc , a rolling cost q : Rn × Rc → R, and a terminal cost
qT : X → R. The dimensions n and c are the state and input control dimensions respectively. f specifies
the system dynamics. Wt is the standard Wiener process (Brownian motion). The problem is to find the
optimal control u∗ (usually u∗ is restricted in some way; we restrict u∗ : [0, T]→ U to the standard L2 space)
that minimizes the cost function J .

dx = f(x(t),u∗(t))dt+G(t,x(t),u∗(t))dWt (1)

J∗(t,x(t)) = min
u∗

{
qT (x(T)) +

∫ T

t=0

q(x(t),u∗(t)) dt

}
(2)

This is analgous to the discrete time formulation, with the exception that continuous time control literature
largely follows the convention of minimizing cost instead of maximizing reward. We follow this convention
for the rest of the report.

The reader may note the seeming inconsistency of claiming to know the system dynamics, but including
stochasticity (Wt) nonetheless. First, it is a common approach for modeling real world dynamical systems
where parameter estimates may have uncertainty. Alternatively, stochasticity can be added as a mechanism
for handling complex nonlinear effects that the model does not account for. Finally, stochasticity can account
for noise in the control inputs of the system.

The control problem in equations (1) and (2) leads to the well known Hamilton Jacobi Bellman PDE (and
boundary). If V satisfies this equation, then V = J∗ (the optimal cost to go) [12]. The derivation is again,
outside the scope of this report, and can be seen in full detail in [12, p. 182].

∂V

∂t
= min

u(t)

{
q(x,u) + 〈∇xV, f(x,u)〉+

1

2
Tr[HessxV G(t,x,u)G(t,x,u)T]

}
V (T,x) = qT (x(T))

One important observation is that the stochasticity disappears in this formulation, appearing only as the
product of the Hessian and the noise covariance matrix in the last term. This can intuitively be understood
as an additional diffusive term; when G = σI, the term becomes a scalar multiple of the Laplacian ∆V .
Solving for V in the general case is highly nontrivial. We restrict our attention to a special class of functions
f where f is semilinear with respect to u, or f(x,u) = a(x)+B(x)u. Furthermore, we also limit our analysis

2

to constant quadratic cost. That is, q(x,u) = 1
2 (xTQx + uTRu) while qT (x) = 1

2x
TQTx. In this setting,

we find that the optimal control u∗ = −R−1B(x)T∇xV . Unsurprisingly, this is a policy which moves in the
direction of decreasing cost. Furthermore, we also restrict G(t,x,u) to be a multiple of the identity matrix,
that is, G = σI, where σ controls the noise. These assumptions result in the following HJB PDE:

∂V

∂t
=

1

2
xTQx− 1

2
(∇xV)TB(x)R−1B(x)T (∇xV) + 〈∇xV, a(x)〉+

σ2

2
Tr[HessxV] (3)

V (T,x) =
1

2
x(T)TQTx(T) (4)

2.2 Semilinear Parabolic Partial Differential Equations

Under the assumptions specified in the previous section for the specified stochastic control task, particularly
the restriction of f(x,u) to the space of semilinear functions f(x,u) = a(x)+B(x)u, the resulting Hamilton
Jacobi Bellman (HJB) PDE takes on a form known as a semilinear parabolic PDE. A semilinear parabolic
PDE has the following form:

∂v

∂t
+ ϕ (t, x, v,∇xv) + µ(t, x, v,∇xv)T∇xv(t, x) +

1

2
Tr
[
Hessxv(t, x)G(t, x, v)G(t, x, v)T

]
= 0 (5)

d2q‘ where v is the function of interest, of both t and x, ϕ is a general nonlinear function, and µ is a vector
valued function of t, x, v,∇xv. While one of the methods we discuss can use this form of the HJB PDE
directly, two of the other methods we discuss use a mathematical trick instead to enhance the tractability
of learning the function v. [13] showed that the solution to equation (5) is also a solution to the following
Forwards-Backwards Stochastic Differential Equation (SDE) 1

dXt = µ (t,Xt, Yt, Zt) dt+ σ (t,Xt, Yt) dWt, t ∈ [0, T] (6)

X0 = ξ (7)

dYt = ϕ (t,Xt, Yt, Zt) dt+ Z ′tσ (t,Xt, Yt) dWt, t ∈ [0, T) (8)

YT = g (XT) (9)

where ξ is the initial state and g(XT) is the boundary condition. In this framework, solving the HJB PDE
for a stochastic control problem can be understood as solving for a controlled diffusion over the relevant
domain.

3 Methods

3.1 Deep Backwards Stochastic Differential Equation Network

In [14], Han et. al develop the Deep Backwards Stochastic Differential Equation Network (Deep BSDE
Network) that utilizes the stochastic differential equation formulation of equation 5 to approximate a solution
to the HJB PDE of interest. The key difference from equation 5 is that µ and σ are restricted so that
µ(t,Xt, Yt, Zt) = µ(t,Xt) and similarly σ(t,Xt, Yt) = σ(t,Xt).

1The more canonical form in most literature concerning SDEs is the following, where the integral is understood to be the
standard Itô integral in stochastic calculus.

Xt = ξ +

∫ t

0
µ (s,Xs, Ys, Zs) ds+

∫ t

0
σ (s,Xs, Ys) dWs

Yt = g (XT) +

∫ T

t
ϕ (s,Xs, Ys, Zs) ds+

∫ T

t
Z′tσ (s,Xs, Ys) dWs

However, the deep neural network methods that we present are best understood as using the differential form to learn a
particular discretization scheme, so we limit our attention to the selected form.

3

Figure 1: The Deep BDSE architecture, from [14]

Architecture

Figure 1 illustrates the system architecture. Given the equivalent SDE outlined in equation 6 to the parabolic
PDE described by equation 5, with specified boundary conditions, we construct a neural network architecture
as follows. Select a hyper parameter N to divide our domain T into N discretization steps, each of size
dt = T/N . Observe that Wti −Wti−1

∼ N(0, dt). We will construct a network that learns the gradient of
v (listed as u in 1) at each discretization step, and then forward propagates a trajectory using this gradient
estimate. Finally, the end state of the trajectory at time T is compared to the terminal cost function, with an
appropriate loss function applied to the difference. More specifically, v̂ is the neural network approximation
for v and is defined by the following three connections:

1. Given a neural network with parameters θ, compute ∇v̂(tn, Xtn) = fθ(Xtn)

2. Compute v̂(tn+1, Xtn+1) = v̂(tn, Xtn)−f (tn, Xtn , v̂(tn, Xtn),∇v̂(tn, Xtn)) dt+∇v̂(tn, Xtn)Tσ(tn, Xtn)(Wtn+1−
Wtn)

3. Compute Xtn+1
= Xtn + µ(tn, Xtn)dt+ σ(tn, Xtn)(Wtn+1

−Wtn)

Loss Function

We then optimize the network parameters θ with the architecture and paths Xtn specified above using the
following loss function:

L(θ) = E [|g(Xtn)− v̂(Xtn ,Wtn)|]

Training

Training is done by randomly sampling to construct Wiener process samples (Wt) for all t, propagating Xt

using µ and σ (as specified in the connection (3)), and then applying the neural network approximation for
v̂. The Loss function L(θ) is minimized using the Adam optimizer.

3.2 Forward Backward Stochastic Neural Network

Building off the Deep BSDE method from [14], [15] considers the original stochastic differential equation
presented in 6 without restricting µ or σ.

Architecture

The chosen SDE model leads to what is known as the Euler-Maruyama discretization scheme for SDEs, given
by:

Xn+1 ≈ Xn + µ (tn, Xn, Yn, Zn) ∆tn + σ (tn, Xn, Yn) ∆Wn

Yn+1 ≈ Yn + ϕ (tn, Xn, Yn, Zn) ∆tn + (Zn)
′
σ (tn, Xn, Yn) ∆Wn

4

This leads to an architecture to approximate the solution v as v̂ with a neural network parameterized by θ.
As before, we select N , the size of our time discretization mesh, and divide T/N to get dt. We construct two
types of connections, but use a single neural network to approximate v̂. In what follows, v̂ is understood to
be parameterized by θ (v̂θ):

• Compute Xtn+1
= µ

(
tn, Xtn , v̂(tn, Xtn),∇Xtn

v̂(tn, Xtn)
)
· dt+ σ (tn, Xn, v̂(tn, Xtn)) dWtn

• Define Ỹtn+1 = v̂(tn, Xtn)+ϕ(tn, Xtn , v̂(tn, Xtn),∇Xtn
v̂(tn, Xtn))dt+

(
∇Xtn

v̂(tn, Xtn)
)T
σ (tn, Xtn , v̂(tn, Xtn)) dWtn

Loss Function

Using the specified architecture, we seek to minimize the following loss with respect to θ (recall v̂ is actually
v̂θ). Define the loss function as

L(θ) = EWt

[
(YtN − g(XtN))

2
+

N−1∑
i=0

(
Ytn+1 − v̂θ

(
tn+1, Xtn+1

))2]

Training

Randomly sample a Wiener process Wt and use this to simulate a trajectory through space and time with
a specified initial condition as indicated above. Use the Adam optimizer to minimize loss.

3.3 Deep Galerkin Method

Sirignano et. al proposed the Deep Galerkin Method in [16]. Consider a parabolic PDE with d spatial
dimensions:

∂tu(t, x) + Lu(t, x) = 0 (t, x) ∈ [0, T]× Ω

u(t = 0, x) = u0(x) x ∈ Ω

u(t, x) = g(t, x) x ∈ [0, T]× ∂Ω

where ∂Ω is the boundary of the domain and x ∈ Ω ⊂ Rd. This method uses stochastic gradient descent at
randomly sampled points in space to minimize a three part loss objective composed of loss functions on the
differential operator, the initial condition, and the boundary conditions 2. We describe this in more detail.

Architecture

The architecture used in the DGM method is a model composed of LSTM type layers. Each layer is
assumed to have M parameters with a nonlinear activation function φ. Each layer contains “sub-layers” of
computations. The important feature is the repeated element-wise multiplication of nonlinear functions of
the input. This helps to model more complicated functions which are rapidly changing in certain time and
space regions. The key hyperparameters in the neural network are the number of layers L, the number of
units M in each sub-layer, and the choice of activation unit φ(y). Given the architecture’s complexity, we
give the full specification in the appendix.

2[16] proved a key theorem, that a neural network approximator is also an approximation to the solution of the PDE. The
theorem is sketched as follows. Define Cn as the class of neural networks with n hidden units and let fn with n hidden units
which minimizes J(f).

there exists fn ∈ Cn such that J(fn)→ 0, as n→∞, and

fn → u as n→∞

Then, one can learn the function f which minimizes J(f) using stochastic gradient descent on a sequence of time and space
points drawn at random from Ω and ∂Ω, and the function f approximates the PDE solution u(t, x). Unfortunately, this theorem
does not specify a rate of convergence which means it is of limited benefit to our problem.

5

Loss Function

The goal is to find a set of parameters θ such that the function f(t, x; θ) minimizes the error J(f). If the
error J(f) is small, then f(t, x; θ) will closely satisfy the PDE differential operator, boundary conditions,
and initial condition. Then, the loss function is:

J(f) = ‖∂tf(t, x; θ) + Lf(t, x; θ)‖22,[0,T]×Ω + ‖f(t, x; θ)− g(t, x)‖22,[0,T]×∂Ω + ‖f(0, x; θ)− u0(x)‖22,Ω

Training

The DGM algorithm is:
1. Generate random points (tn, xn) from [0, T] × Ω and (τn, zn) from [0, T] × ∂Ω according to respective
probability densities v1 and v2. Also, draw the random point wn from Ω with probability density v3.
2. Calculate the squared error G(θn, sn) at the randomly sampled points sn = {(tn, xn), (τn, zn), wn} where:

G(θn, sn) = (
∂f

∂t
(tn, xn; θn) + Lf(tn, xn; θn))2 + (f(τn, zn; θn)− g(τn, zn))2 + (f(0, wn; θn)− u0(wn))2

3. Take a descent step at the random point sn:

θn+1 = θn − αn∇θG(θn, sn)

4. Repeat until convergence criterion is satisfied.

3.4 Deep Q-Network

Mnih et. al proposed the deep Q-network(DQN) approach in [17] that combines a modified version of online
Q-learning with deep neural networks. We use this model as a baseline. This approach trains the model to
choose the best action for given observations and rewards on the terminal states.

Architecture

The input to the neural network consists of a sequence of preprocessed data produced by the preprocessing
map φ from a sequence of sample states. The first hidden layer convolves filters and applies a rectifier
nonlinearity. The second hidden layer convolves filters again followed by a rectifier nonlinearity. This is
followed by a third convolutional layer that convolves filters followed by a rectifier. The final hidden layer is
fully-connected and consists of rectifier units. The output layer is a fully-connected linear layer with a single
output for each valid action. See Figure 2

The goal is to train a model to be able to select actions to maximize future rewards. We can define
the optimal action-value function Q∗(s, a) as the maximum expected return achievable by following any
policy, after seeing some sequence s and then taking some action a. Then, we estimate the action-value
function by using the Bellman equation as an iterative update, Qi+1 = Es′ [r + γmaxa′ Qi(s

′, a′)|s, a] where
s′ stands for the next time-step state sequence and a′ stands for all possible actions. Such value iteration
algorithms converge to the optimal action-value function, Qi → Q∗ as i → ∞. In practice, we refer to a
neural network function approximator with weights θ as a Q-network. Then, it trains the Q-network by
adjusting the parameters θi at iteration i to reduce the mean-squared error in the Bellman equation.

Loss Function

It then leads to a sequence of loss functions Li(θi) that changes at each iteration i,

Li(θi) = Es,a,r[(Es′ [y|s, q]−Q(s, a; θi))
2]

= Es,a,r,s′ [(y −Q(s, a; θi))
2] + Es,a,r[Vs′ [y]]

where y stands for approximate target values, y = r + γmaxa′ Q(s′, a′; θ−i) and θ−i stands for the weight
parameter θ from previous iteration. Then, it optimizes the loss function by stochastic gradient descent.

6

Figure 2: The DQN architecture, from [17]

Method Average Error Training Time (s)
Deep BSDE 0.0018 118

FBSNN 0.00214 83
DGM 0.00180 242

Table 1: Results from running the methods over 3 trials.

Training

It draws samples (or minibatches) of experience uniformly at random from the pool of stored samples and
applies Q-learning, updating the weight parameters using stochastic gradient descent.

4 Experiments

4.1 Linear Quadratic Gaussian

We first evaluate a Linear Quadratic Gaussian task with a known semi-analytical solution to test the efficacy

of various methods and their accuracy. We consider a problem where Q = R = I, and QT (x) = ln
(

1+||x||2
2

)
.

σ =
√

2I, while f(x) = 2
√
λu. To test the efficacy of this method in learning high dimensional value

functions, we consider a 100 dimensional case. The HJB PDE for this control task is

∂u

∂t
= λ||u(x, t)||2 −∆u(x, t)

with a boundary condition specified byQT . It admits the solution u(t,x) = − 1
λ ln

(
E
[
exp

(
−λg

(
x +
√

2WT−t
))])

[14]. We use this solution to compute the accuracy of our method, and discuss its evaluation in more detail
in the appendix. Note that the optimal control for this solution is to proceed in the direction of the origin
with an appropriate normalization constant. Results are listed in Table 1.

7

(a) m = 1,M = 1, L = 1 (b) m = 1,M = 10, L = 1 (c) m = 1,M = 100, L = 0.5

Figure 3: Nonlinear dynamics of the cartpole system. Phase plots for θ̈ as a function of θ and θ̇, x, ẋ are
both fixed to 0.

4.2 Cart-Pole

Setup

The Cart-Pole (CP) problem is a standard benchmark in RL. The objective is to keep the inverted pendulum
linked to a cart in an upright position, using only movements to the left or to the right. We model the
dynamical system fully using the Newtonian mechanics derivation from [18]. The system parameters are M ,
the mass of the cart; m, the mass of the pendulum; L, the pendulum length; x, the cart’s position on the
x-axis; θ, the angle of the pendulum from vertical; and finally u(t), the control to the cart. We obtain the
following dynamical system with state space x = [x1, x2, x3, x4]T = [x, ẋ, θ, θ̇]T

ẋ = a(x) +B(x)u(t) (10)

r :=
m

M +m
(11)

a(x) =


x2

rLx2
4 sinx3 − rL cos x3

L(4
3−r cos2 x3)

(
g sinx3 − 0.5Lrx2

4 sin 2x3

)
x4

1

L(4
3−r cos2 x3)

(
g sinx3 − 0.5Lrx2

4 sin 2x3

)
 (12)

B(x) =


0

r2 cos2 x3

m(4
3−r cos2 x3)

+ r
m

0
r

mL(4
3−r cos2 x3)

cosx3

 (13)

These equations, derived in [18], describe the system fully, but are highly nonlinear. A few phaseplots for
different parameter combinations in Figure 3 illustrate the extent of the nonlinearities for different parameter
combinations. For the OpenAI Gym example we consider, they are quite strong.

In practice, a common approach to make this system tractable is to linearize the dynamics model around
the point ~0, resulting in the well known Linear Quadratic Regulator (LQR) setup, which is described and
solved in [19]. However, linearization involves restrictive assumptions about the physical system. [19] makes
three assumptions: small angular velocity (θ̇ � 1), m � M so m/M ≈ 0, and that sin and cos can be
approximated with the small angle assumption, so sin θ ≈ θ and cos θ ≈ 1. These assumptions are only valid
over a very narrow range of the state space where θ is in the range ±8◦. 3 Previous attempts at nonlinear
control have generally opted to solve a related but slightly different formulation of this problem by using
a log transform to yield a PDE for a ”desirability” function, rather than the value function [20]. Many of
these approaches use traditional grid methods. These also place a barrier on translating results back to the

3This is an assumption worth discussing in more detail. In the OpenAI Gym Cartpole environment, as with many other
formulations of the problem, the cartpole starts with the pendulum at the top. It’s completely reasonable that an LQR controller
in this regime would actually do quite well, since it may be the case that θ doesn’t exceed the narrow range of ±8◦. However,
our aim was to show that we could learn a far more general strategy that would work even if the system was initialized in
difficult conditions, such as with the pendulum at the bottom.

8

heightMethod Reward Reached (max 200) Training Time Required
FBSNN 200 ∼ 20 seconds

DQN 200 ∼ 80 seconds
Simple 40 -

Table 2: Results from Cartpole simulation, averaged over 10 attempts.

original problem, as well as recovering the optimal policy. Our proposed use of neural networks thus suggests
a way to solve the problem entirely while avoiding these shortcomings.

Results

We run the FBSNN method on the cartpole problem from the OpenAI Gym Cartpole-v1 environment,
which has parameters m = 0.1, M = 1, and L = 1. In our discussion section, we discuss why we did not apply
the BDSE method and the DGM. Using the learned value function V , we can identify the optimal control
action at any point in space by calculating u∗ = −R−1B(x)T∇xV . We then apply simple thresholding to
recover the control. We began our training by fixing Q = QT = R = I, G = σI, σ = 0.01, T = 10s, although
these were subject to change. We apply these neural network and control strategies to the OpenAI Gym
Cartpole-v1 environment, and report their average episode reward in Table 2. The ”Simple” strategy simply
chooses the direction that the pendulum is currently leaning.

Figures 4a and 4b show the training curves of the FBSNN PDE learner and the DQN method for the
Cartpole problem. We measured the performance of the methods at intervals over their training time, until
they reached their peak. Performance is measured in the number of steps the cartpole stayed up (averaged
over 10 attempts).

Discussion

Although we were able to achieve our goals of learning a solution to the desired PDE for both examples, the
results were mixed. All methods performed fairly well in learning an approximate solution to the LQG, as
seen in Table 1. But limitations in the Deep BSDE method and a poor showing by the DGM meant that the
FBSNN was the only method that performed reasonably on the Cartpole example. We analyze the results
in more detail below.

The Deep BSDE method was architecturally limited for longer time horizons (T) critical to
the control problem. The Deep BSDE method worked well in the LQG case because the time horizon
was short. But because the number of parameters scales with the size of the discretization mesh, for larger
time horizons such as in the Cartpole problem (T = 4), this method soon became intractable, especially
when we wanted to experiment with even longer time horizons. The problem is not solved by reducing the
discretization mesh size, since this then means that the learned solution becomes less accurate. [5] also
pointed out that the Deep BSDE method cannot be used to infer values outside of the discretization mesh
since each discrete timstep is a layer [0, T].

The Deep Galerkin Method struggled to learn the full nonlinear system without additional
constraints. While the Deep Galerkin Method performed very well in the LQG setting, it struggled to
cope with the highly nonlinear HJB PDE found in the Cartpole problem. The results were too poor to use.
We leave some notes quantifying this failure in the appendix. Unlike the SDE based methods, which likely
benefitted from decoupling components of the HJB PDE into two separate stochastic trajectories, the Deep
Galerkin Method had no such constraints narrowing the search space. As noted earlier, we sought to learn
the value function, not the often learned ”desirability” function resulting from a log transform of the HJB
PDE, as suggested in [20]. Since the proponents of the DGM suggested that it could achieve promising
results on nonlinear PDEs, we opted to test our network on the untransformed PDE. A possible avenue
for work would be to test the DGM on these transformed PDEs, though its unclear what benefits such an
approach would yield over the conventional methods designed for this transformed desirability PDE.

9

(a) The return (number of steps the cartpole stays balanced) of the FBSNN (PDE) Learner.
The maximum return of 200 was reached after around 5500 iterations. Beyond 8000 iterations
of training, the performance decreases.

(b) Comparison of the training plots of the FBSNN (PDE) learner and DQN. The PDE learner is able to learn the solution much
faster than the DQN. On the other hand, we find that the DQN learner is more robust and its performance does not decrease
with more training steps.

10

The FBSNN method performed well, consistently beating Deep Q-Learning by reaching an
optimal solution faster. Figure 4b illustrates this pattern, which was observed consistently over multiple
trajectory runs (see Figure 4a as well). On average, the training time for the FBSNN method was 25% of
the required training time for Deep Q-Learning.

The FBSNN method seem to be highly variable in recovering a solution. While we generally
recovered an optimal solution, exactly when we were able to do so seemed unpredictable. The FBSNN’s
benefit of generalizing to times different from the discretization mesh seems to come at the expense of higher
variability. On one hand, we nearly always recovered an optimal (200 reward) solution with sufficient training
time. But on the other, additional training didn’t always help and sometimes degraded performance, see 4b.
One possibility was overparameterization of our networks, but a hyperparameter scan of layer sizes didn’t
yield effective improvements (see notes in Appendix with quantitative characteristics). We believe that the
highly stochastic training paradigm suggests that the simulated trajectories may impart substantial variance
in the trained model. These results suggest that future variants of these methods will need to consider
regularizing and the neural network’s vulnerability to PDE misspecification.

On the other hand, another interesting, and potentially conflicting observation comes from an accidental
mistake made earlier in our experiments. One of the authors made a mistake in an initial attempt to derive
equation 10 (assuming a point mass for the pendulum which leads to a different moment of inertia) leading
to a few constant factors differing slightly in the derived system. Despite these errors, the value function and
ensuring control still led to optimal policies that achieved perfect 200 reward. Such a mistake contradicts
our presumption earlier that our network was overfitting although it is possible that the author’s mistake
had sufficiently low impact.

5 Conclusion

All methods showed some promise empirically on a simplified LQG example. But structural limitations for
the Deep BSDE method and the complexity of learning a full model without constraints for the Deep Galerkin
Method proved to be their downfall. The FBSNNs performed well on the Cartpole problem, learning an
optimal solution much faster than a Deep Q-Learning baseline. The technique showed promise in learning the
value function, suggesting that the intelligent incorporation of physics-informed invariants can help reduce
the training time of machine learning tasks that seek to learn complicated nonlinear dynamics. However,
these physics informed methods still want for improvement. While the Deep Q-Learning behavior may have
learned far more slowly in the Cartpole example, its training behavior was more consistent.

We conclude our study by commending the designers of these physics based machine learning methods for
the methods’ potential, and suggest the following avenues of future research for those committed to seeing
these methods receive wider adoption. Firstly, all methods, but particularly the SDE based methods, would
benefit from stronger learning guarantees and convergence properties. While [16] proposed an approximation
theorem (mentioned in Footnote 2 earlier), such a result is too weak to describe the rate of convergence
behavior, nor does it apply for the SDE based methods. The SDE based methods in particular have higher
variability, so convergence analysis would be welcome. Secondly, the implications of model misspecification
for control have not been addressed adequately by research in physics informed machine learning. Finally,
the success of the FBSNN suggests that intelligent decompositions of PDEs can help simplify the task of
learning a complex nonlinear dynamical system, so such an avenue may yield promising alternative deep
neural network architectures for similar problems.

11

References

[1] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25, pages 1097–1105. Curran Associates, Inc., 2012.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[4] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli
Qin, Augustin Ž́ıdek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure predic-
tion using potentials from deep learning. Nature, 577(7792):706–710, 2020.

[5] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

[6] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

[7] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part
ii): Data-driven discovery of nonlinear partial differential equations. arXiv preprint arXiv:1711.10566,
2017.

[8] Horia Mania, Michael I. Jordan, and Benjamin Recht. Active learning for nonlinear system identification
with guarantees, 2020.

[9] Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Information
theoretic regret bounds for online nonlinear control, 2020.

[10] Mehryar Mohri. Reinforcement learning. Lecture Notes.

[11] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1.

[12] Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations, vol-
ume 43. Springer Science & Business Media, 1999.

[13] E. Pardoux and S. Peng. Backward stochastic differential equations and quasilinear parabolic partial
differential equations. In Boris L. Rozovskii and Richard B. Sowers, editors, Stochastic Partial Dif-
ferential Equations and Their Applications, pages 200–217, Berlin, Heidelberg, 1992. Springer Berlin
Heidelberg.

[14] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[15] Maziar Raissi. Forward-backward stochastic neural networks: Deep learning of high-dimensional partial
differential equations. arXiv preprint arXiv:1804.07010, 2018.

[16] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[18] Razvan V Florian. Correct equations for the dynamics of the cart-pole system. page 6.

12

[19] Roderic A. Grupen. Putting it all together - balancing the cart-pole. Lecture Notes.

[20] Matanya B Horowitz, Anil Damle, and Joel W Burdick. Linear hamilton jacobi bellman equations in
high dimensions. In 53rd IEEE Conference on Decision and Control, pages 5880–5887. IEEE, 2014.

13

A Notes on Stochastic Control

A.1 Finding the Optimal Control

As noted in the main section, the HJB PDE involves minimizing the quantity

L(u) =

{
q(x,u) + 〈∇xV, f(x,u)〉+

1

2
Tr[HessxV G(t,x,u)G(t,x,u)T]

}
with respect to u. Fortunately, since we restrict our attention to semilinear systems, this is relatively
straightforward: ∇uL = Ru + (∇xV)

T
B(x). Since we want the minimum we set ∇uL = 0, and we find

that u∗ = −R−1(∇xV)TB(x). Substituting this back into the original equation yields equation (3)

A.2 Connections to Stochastic Differential Equation

In order to use the BDSE method and FBSNN methods, we need to be able to interpret equations (3) and (4)
to the form specified in equation (5). This proceeds straightforwardly, and results in the following function
definitions:

ϕ(t,x, V,∇xV) = q(x,−R−1B(x)∇xV) =
1

2

(
xTQx− (∇xV)TB(x)R−1B(x)T (∇xV)

)
µ(t,x,∇xV) = f(x,−R−1B(x)∇xV) = a(x)−B(x)(−R−1B(x)T∇xV)

G(t,x,u) = σI

A.3 Architecture of the Deep Galerkin Method

Sirignano et. al. propose a rather complicated deep network architecture, composed of LSTM like layers
[16]. We describe them fully below, although we direct the reader to [16] for a more detailed explanation.

S1 = σ(W 1→x + b1),

Zl = σ(Uz,l
→
x +W z,lSl + bz,l), l = 1, ..., L,

Gl = σ(Ug,l
→
x +W g,lS1 + bg,l), l = 1, ..., L,

Rl = σ(Ur,l
→
x +W r,lSl + br,l), l = 1, ..., L,

H l = σ(Uh,l
→
x +Wh,l(Sl �Rl) + bh,l), l = 1, ..., L,

Sl+1 = (1−Gl)�H l + Zl � Sl, l = 1, ..., L,

f(t, x; θ) = WSL+1 + b,

where
→
x = (t, x), the number of hidden layers is L + 1, and � denotes element-wise multiplication (i.e.,

z � v = (z0v0, ..., zNvN)). The parameters are

θ = {W 1, b1, (Uz,l,W z,l, bz,l)Ll=1, (U
g,l,W g,l, bg,l)Ll=1, (U

r,l,W r,l, br,l)Ll=1, (U
h,l,Wh,l, bh,l)Ll=1,W, b}.

The number of units in each layer is M and σ : RM → RM is an element-wise nonlinearity:

σ(z) = (φ(z1), φ(z2), ..., φ(zM)),

where φ : R → R is a nonlinear activation function such as the tanh function, sigmoidal function or ReLU.
The parameters in θ have dimensions W 1 ∈ RM×(d+1), b1, bz,l, bg,l, br,l, bh,l ∈ RM , Uz,l, Ug,l, Uz,l, Uh,l ∈
RM×(d+1), W z,l,W g,l,W r,l,Wh,l ∈ RM×M , W ∈ R1×M , and b ∈ R

B Experiments

B.1 Code and Environments

All LQG examples were trained on an Nvidia GTX 1070 for equivalent comparison. Code was adapted and
added from initial papers, and is available at the following repositories. The cartpole specific dynamics are
included in the FBSNN repo.

14

• Deep Galerkin Method (https://github.com/Leo-Enrique-Wu/DGM)
• Deep BDSE Method (https://github.com/frankhan91/DeepBSDE)
• FBSNN (also includes Cartpole Simulation) (https://github.com/nitinshyamk/FBSNNs)

B.2 Semi analytical solution for the Linear Quadratic Gaussian problem

The semi analytical solution to the proposed Linear Quadratic Gaussian problem from Section 5.1 is discussed
briefly here. For evaluation to compare the accuracy, we compute u(t,x) using Monte Carlos sampling 10k
samples for each point. This is tractable with tensorized operations. We also used an upper bound to sanity
check our results.

u(t, x) =
−1

λ
lnE

[
e−λg(x+

√
2WT−t)

]
=
−1

λ
lnE

(1 + ||x+
√

2WT−t||2

2

)−λ
=
−1

λ
lnE

[(
1 +

∑n
i=1 Yi

2

)−λ]

Here, Yi is the noncentral χ2
1

(
x2
i

2(T−t)2

)
distribution, which has has mean 2(T − t)2 + x2

i . Apply Jensen’s

inequality since f(x) = x−λ is convex for x > 0 and positive λ.

E

[(
1 +

∑n
i=1 Yi

2

)−λ]
≥ E

[
1 +

∑n
i=1 Yi

2

]−λ
=

(
1

2
+

1

2
||x||2 + n(T − t)2

)−λ
This upper bound is substituted back in, and since ln is an increasing function and we have a negative

factor, the lower bound on the expectation translates to an upper bound on u(t, x):

u(t, x) =
−1

λ
lnE

[(
1 +

∑n
i=1 Yi

2

)−λ]

≤ ln

(
1

2
+

1

2
||x||2 + n(T − t)2

)

B.3 Hyperparameter Optimization for Cartpole

For all hyperparameters, we set T = 1.0, N = 50 and Q = Qt = I and R = 1. We sought to optimize the
network architecture over a few different ways.

For the FBSNN method, we initially used a batch size of K = 5000 and sought to optimize the layer size.

Layer Size 8 16 32 64 128 256
Loss (averaged per sample) 79.68 2.89 0.124 0.772 62.225 66.14

For using the DGM method to solve the Cart-Pole problem, we searched for several different hyperparam-
eter settings for the neural network, but the losses decrease slowly, and even in the best cases, retained an
absolute value far too high for effective control.

15

https://github.com/Leo-Enrique-Wu/DGM
https://github.com/frankhan91/DeepBSDE
https://github.com/nitinshyamk/FBSNNs

of layers nodes per layer learning rate the loss after 1000 iter initial loss decreasing factor
3 50 0.0001 9.68 · 107 1.17 · 108 1.2
3 50 0.001 4.62 · 107 1.00 · 108 2.2
3 50 0.01 4.59 · 107 1.08 · 108 2.4
3 50 0.1 6.06 · 107 7.74 · 107 1.3
5 50 0.01 5.15 · 107 1.33 · 108 2.6
5 50 0.01 2.57 · 107 1.09 · 108 4.3

* Note:

The decreasing factor = loss0
loss1000

16

	Introduction
	Hamilton Jacobi Bellman Partial Differential Equations
	Stochastic Optimal Control
	Semilinear Parabolic Partial Differential Equations

	Methods
	Deep Backwards Stochastic Differential Equation Network
	Forward Backward Stochastic Neural Network
	Deep Galerkin Method
	Deep Q-Network

	Experiments
	Linear Quadratic Gaussian
	Cart-Pole

	Conclusion
	Notes on Stochastic Control
	Finding the Optimal Control
	Connections to Stochastic Differential Equation
	Architecture of the Deep Galerkin Method

	Experiments
	Code and Environments
	Semi analytical solution for the Linear Quadratic Gaussian problem
	Hyperparameter Optimization for Cartpole

